24h購物| | PChome| 登入
2013-07-12 13:49:55| 人氣515| 回應0 | 上一篇 | 下一篇

[UVA] 11155 - Be Efficient

推薦 0 收藏 0 轉貼0 訂閱站台

B

Next Generation Contest 3

Time Limit: 2 seconds

Be Efficient

 

Consider an integer sequence consisting of N elements, where -

X0 = A

Xi = (( (Xi-1) * B + C ) % M)+1 ���� for i = 1 to N-1

You will be given the values of A, B, C, M and N. Find out the number of�consecutive subsequences� whose sum is a multiple of M.

Consider an example where A = 2, B = 1, C = 2, M = 4 and N = 4.

So, X0 = 2, X1 = 1, X2 = 4 and X3 = 3.

The consecutive subsequences are {2}, {2 1}, {2 1 4}, {2 1 4 3}, {1}, {1 4}, {1 4 3}, {4}, {4 3} and {3}.

Of these 10 �consecutive subsequences�, only two of them adds up to a figure that is a multiple of 4 �{1 4 3} and {4}.

Input

The first line of input is an integer T(T<500) that indicates the number of test cases. Eact case consists of 5 integers A, B, C, M and N. A, B and C will be non-negative integers not greater than 1000.N and M will be a positive integers not greater than 10000.

Output

For each case, output the case number followed by the result.

Sample Input

Output for Sample Input

2
2 1 2 4 4
923 278 195 8685 793
Case 1: 2
Case 2: 34
 

 

Problem Setter: Mohiul Alam Prince
Moderator and Alternate Solution: Sohel Hafiz

題目描述:

根據給定的方程將陣列建出來,問有多少組區間總合是 M 的倍數。

題目解法:

記錄一個累計值 A[i] = sigma(X[i])%M。

對於一個區間 X[l ... r] 的總合,可以看成 A[r]-A[l-1],如果存在是 M 的倍數,

那麼 A[l] 和 A[r] 具有相同的餘數,因此用掃描線的思路去看,找 0...i-1 有多少組餘數等於 A[i]。

但是如果餘數為 0 要特別考慮自己本身。


#include <stdio.h>
int X[10005];
int main() {
    int A, B, C, M, N;
    int testcase, cases = 0;
    int i;
    scanf("%d", &testcase);
    while(testcase--) {
        scanf("%d %d %d %d %d", &A, &B, &C, &M, &N);
        X[0] = A;
        for(i = 1; i < N; i++)
            X[i] = (X[i-1]*B+C)%M+1;
        int sum = 0, mark[10005] = {};
        int ret = 0;
        for(i = 0; i < N; i++) {
            sum = (sum+X[i])%M;
            ret += mark[sum];
            if(sum == 0)    ret++;
            mark[sum]++;
        }
        printf("Case %d: %d\n", ++cases, ret);
    }
    return 0;
}

台長: Morris
人氣(515) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][組合][逆元] 11174 - Stand in a Line
此分類上一篇:[UVA][分治] 11129 - An antiarithmetic permutation

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文