24h購物| | PChome| 登入
2013-07-12 13:31:17| 人氣585| 回應0 | 上一篇 | 下一篇

[UVA][dp] 11133 - Eigensequence

推薦 0 收藏 0 轉貼0 訂閱站台

Problem E: Eigensequence

Given an increasing sequence of integers a1, a2, a3, ..., ak, the E-transform produces a sequence of the same length, b1, b2, b3, ..., bk such that
  • b1 = a1
  • for j>1, bj is the only integer aj-1 < bj ≤ aj, which is divisible by aj - aj-1.
For example, from S = 0, 1, 4, 9, 16, 25, 36, 49 one gets E(S) = 0, 1, 3, 5, 14, 18, 33, 39.

A sequence S such that E(S)=S is called an eigensequence. For instance, S = 2,3,4,6,8,12,16,18,20 is an eigensequence.

Given integers a1 and an, how many eigensequences (of any length) start with a1 and end with an?

Input has many data lines, followed by a terminating line. Each line has two integers, a1 and an. If a1 < an, it's a data line. Otherwise it's a terminating line that should not be processed. On each line, 0 ≤ a1 ≤ an ≤ 44. This guarantees that each output fits into 32 bit integer.

For each data line, print a line with a1, an, and x, where x is the number of eigensequences (of any length) that start with a1 and end with an.

Sample input

0 3
5 7
2 8
0 0

Output for sample input

0 3 3
5 7 1
2 8 12

Don Reble

題目是要找到 E(S) = S 的個數為何,起點是 a1 終點是 an。

我們決定使用動態規劃去進行計算

dp[i][j] 表示當前長度為 i, bi 的值為 j 的方法數。

由於限定 E(S) = S, ai = bi, 且 bi 遞增, ai 遞增。

轉移的方式窮舉下一個可以變成的 bi 為何。



#include <stdio.h>
#include <string.h>
int dp[50][50];//[length][bi]
int main() {
    int a1, an;
    int i, j, k, l, p;
    while(scanf("%d %d", &a1, &an) == 2) {
        if(a1 == 0 && an == 0)  break;
        memset(dp, 0, sizeof(dp));
        dp[1][a1] = 1;
        int ret = 0;
        for(i = 1; i <= an+1; i++) {
            ret += dp[i][an];
            for(j = 0; j <= an; j++) {
                if(dp[i][j] == 0)    continue;
                for(l = j+1; l <= an; l++) {//next ai
                    int v = l-j;
                    if(l%v == 0)
                        dp[i+1][l] += dp[i][j];
                }
            }
        }
        printf("%d %d %d\n", a1, an, ret);
    }
    return 0;
}

台長: Morris
人氣(585) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][分治] 11129 - An antiarithmetic permutation
此分類上一篇:[UVA][greedy] 11103 - WFF 'N PROOF

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文