24h購物| | PChome| 登入
2013-07-12 13:22:46| 人氣964| 回應0 | 上一篇 | 下一篇

[UVA][前序] 11108 - Tautology

推薦 0 收藏 0 轉貼0 訂閱站台

Problem D: Tautology

WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
  • p, q, r, s, and t are WFFs
  • if w is a WFF, Nw is a WFF
  • if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
The meaning of a WFF is defined as follows:
  • p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
  • K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
Definitions of K, A, N, C, and E
     w  x   Kwx   Awx    Nw   Cwx   Ewx
  1  1   1   1    0   1   1
  1  0   0   1    0   0   0
  0  1   0   1    1   1   0
  0  0   0   0    1   1   1

A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case. For each test case, output a line containing tautology or not as appropriate.

Sample Input

ApNp
ApNq
0

Possible Output for Sample Input

tautology
not

Gordon V. Cormack

題目給定一個前序式,小寫表示運算元(0/1),大寫表示運算子。
tautology 的定義是,不管變數值為何,運算出來的值恆為真(true 1)。
窮舉所有變數的分配方式 2^5 = 32 種,進行前序運算。

#include <stdio.h>
#include <string.h>
#include <stack>
using namespace std;
int main() {
    char s[1005];
    int i, j;
    while(scanf("%s", s) && s[0] != '0') {
        int ret = 1, len = strlen(s);
        int a, b;
        for(i = 0; i < 32; i++) {
            stack<int> stk;
            for(j = len-1; j >= 0; j--) {
                if(s[j] >= 'p') {
                    int val = (i>>(s[j]-'p'))&1;
                    stk.push(val);
                } else {
                    a = stk.top(), stk.pop();
                    if(s[j] != 'N') {
                        b = stk.top(), stk.pop();
                    }
                    if(s[j] == 'K')
                        stk.push(a&b);
                    if(s[j] == 'A')
                        stk.push(a|b);
                    if(s[j] == 'N')
                        stk.push(!a);
                    if(s[j] == 'C')
                        stk.push(!(a&(!b)));
                    if(s[j] == 'E')
                        stk.push(a == b);
                }
            }
            ret &= stk.top();
        }
        puts(ret ? "tautology" : "not");
    }
    return 0;
}

台長: Morris
人氣(964) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][greedy] 11103 - WFF 'N PROOF
此分類上一篇:[UVA][辨識] 1103 - Ancient Messages

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文