24h購物| | PChome| 登入
2013-05-12 20:02:58| 人氣1,583| 回應0 | 上一篇 | 下一篇

[UVA][SlidingWindow] 11536 - Smallest Sub-Array

推薦 0 收藏 0 轉貼0 訂閱站台


H

Smallest Sub-Array

Input: Standard Input

Output: Standard Output

 

Consider an integer sequence consisting of N elements where –

X1 = 1

X2 = 2

X3 = 3

Xi = (Xi-1 + Xi-2 + Xi-3) % M + 1         for i = 4 to N

 

Find 2 values a and b so that the sequence (Xa Xa+1 Xa+2 ... Xb-1 Xb) contains all the integers from [1,K]. If there are multiple solutions then make sure (b-a) is as low as possible.

In other words, find the smallest subsequence from the given sequence that contains all the integers from 1 to K.

 

Consider an example where N = 20, M = 12 and K = 4.

 

The sequence is {1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.

 

The smallest subsequence that contains all the integers {1 2 3 4} has length 13 and is highlighted in the following sequence:

 

{1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.

 

Input

First line of input is an integer T(T<100) that represents the number of test cases. Each case consists of a line containing 3 integers N(2 < N < 1000001), M(0 < M < 1001) and K(1< K < 101). The meaning of these variables is mentioned above.

 

Output

For each case, output the case number followed by the minimum length of the subsequence. If there is no valid subsequence, output “sequence nai” instead. Look at the sample for exact format.

 

Sample Input                               Output for Sample Input

2

20 12 4

20 12 8

Case 1: 13

Case 2: sequence nai


Problemsetter: Sohel Hafiz

Special Thanks: Md. Arifuzzaman Arif

 

#include <stdio.h>
int X[1000005] = {0,1,2,3};
int main() {
    int T, cases = 0;
    int N, M, K, i;
    scanf("%d", &T);
    while(T--) {
        scanf("%d %d %d", &N, &M, &K);
        int modM[3005] = {};
        for(i = 0; i < 3005; i++)
            modM[i] = i%M;
        for(i = 4; i <= N; i++) {
            X[i] = X[i-1] + X[i-2] + X[i-3];
            if(X[i] >= M)   X[i] = modM[X[i]];
            X[i] ++;
        }
        int used[105] = {}, d = 0;
        int tail = 1, mndist = 0xfffffff;
        for(i = 1; i <= N; i++) {
            while(tail <= N && d < K) {
                if(X[tail] <= K && used[X[tail]] == 0)
                    d++;
                if(X[tail] <= K)
                    used[X[tail]]++;
                tail++;
            }
            if(tail > N && d < K)
                break;
            if(mndist > tail-i && d == K)
                mndist = tail-i;
            if(X[i] <= K && used[X[i]] == 1)
                d--;
            if(X[i] <= K)
                used[X[i]]--;
        }
        printf("Case %d: ", ++cases);
        if(mndist != 0xfffffff)
            printf("%d\n", mndist);
        else
            puts("sequence nai");
    }
    return 0;
}

為了加速其運算,全部指針化。

#include <stdio.h>
int X[1000005] = {0,1};
int Y[1000005] = {0,1};
int main() {
    int T, cases = 0;
    int N, M, K, i;
    scanf("%d", &T);
    while(T--) {
        scanf("%d %d %d", &N, &M, &K);
        int modM[3005] = {};
        for(i = 0; i < 3005; i++)
            modM[i] = i%M;
        int xi1 = 3, xi2 = 2, xi3 = 1, xi;
        int idx = 2;
        int *p = &X[1], *q = &Y[1], *pp = &X[1], *qq = &Y[1];
        if(2 <= K)  *(++p) = 2, *(++q) = 2;
        if(3 <= K)  *(++p) = 3, *(++q) = 3;
        for(i = 4; i <= N; i++) {
            xi = xi1 + xi2 + xi3;
            if(xi >= M)   xi = modM[xi];
            xi++;
            if(xi <= K)
                *(++p) = xi, *(++q) = i;
            xi3 = xi2, xi2 = xi1, xi1 = xi;
        }
        *(++q) = N+1;
        int *end = p+1;
        int used[105] = {}, d = 0;
        int mndist = 0xfffffff;
        p = &X[1], q = &Y[1], pp = &X[1], qq = &Y[1];
        for(; pp != end;) {
            while(p != end && d < K) {
                if(used[*p] == 0)
                    d++;
                used[*p]++;
                p++, q++;
            }
            if(p == end && d < K)
                break;
            if(mndist > (*(q-1))-(*qq) && d == K)
                mndist = (*(q-1))-(*qq);
            if(used[*pp] == 1)
                d--;
            used[*pp]--, pp++, qq++;
        }
        printf("Case %d: ", ++cases);
        if(mndist != 0xfffffff)
            printf("%d\n", mndist+1);
        else
            puts("sequence nai");
    }
    return 0;
}

 

 

台長: Morris
人氣(1,583) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][循環節] 12620 - Fibonacci Sum
此分類上一篇:[UVA][ad-hoc] 11319 - Stupid Sequence

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文