24h購物| | PChome| 登入
2014-03-02 20:14:13| 人氣1,498| 回應0 | 上一篇 | 下一篇

[UVA][DP] 11617 - An Odd Love

推薦 0 收藏 0 轉貼0 訂閱站台

 D. An Odd Love 

Context

Spring has arrived and our friend Pepito has fallen in love. But he is not sure if she also loves him, so he decides to ask the daisies. He takes a daisy and alternately speaks the phrases "She loves me" and "She loves me not", while picking one petal off the flower for each phrase. The phrase corresponding to the last petal tells him whether his love is reciprocated or not.

We want to help Pepito to always obtain the answer "She loves me". Therefore, we will make sure that all the daisies have an odd number of petals, by picking one petal off the flowers with an even number.

The Problem

We have a rectangular field of daisies, whose width is W and height H. There is a daisy in each position of this field (w, h), with w= 1, 2, ..., W, and h= 1, 2, ..., H. We have patiently counted the number of petals of each daisy, P[w, h].

Starting from the upper-left corner of the field --i.e., from position (1, 1)-- you have to pass through all positions of daisies with an even number of petals. If your current position is (w, h), you can only do three movements: go down (h+1), go left (w-1) and go right (w+1).

Your task is to compute the minimum number of movements necessary to pass through all positions with an even number of petals.

oddlove.png (15513 bytes)
A sample case with W = 5 and H = 3. The solution is 11. This sample corresponds to the first case in the sample input.

The Input

The first line of the input contains an integer indicating the number of test cases.

For each test case, the first line contains two integers, W and H, separated by a blank space. Then, there are H lines. Each line consists of W digits (between 1 and 9) indicating the number of petals of the corresponding daisy.

The Output

For each test case, the output should contain the minimum number of movements of the corresponding case.

Sample Input

5
5 3
54578
36329
75241
9 1
759456785
2 2
22
22
6 6
777777
772777
777777
777727
727777
777777
7 7
1811181
1118811
1881111
8111111
1188181
1881181
1111111

Sample Output

11
7
3
11
24

OMP'09
Facultad de Informatica
Universidad de Murcia (SPAIN)

題目描述:

現在要把所有偶數的花朵摘掉,求移動最少步數。
一開始在地圖的左上角,接著只能左右移動和往下移動。

題目解法:

無須對所有下一行的所有位置進行狀態轉移,只要考慮停留在左端點還是右端點即可。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
char g[1024][1024];
int main() {
    int testcase;
    int n, m;
    int i, j, k;
    int L[1024], R[1024], C[1024];
    int dp[1024][2];
    scanf("%d", &testcase);
    while(testcase--) {
        scanf("%d %d", &m, &n);
        int N = 0;
        for(i = 0; i < n; i++) {
            scanf("%s", g[i]);
            int l, r;
            l = r = -1;
            for(j = 0; j < m; j++) {
                if((g[i][j] - '0')%2)
                    continue;
                if(l == -1)
                    l = j;
                r = j;
            }
            if(l != -1) {
                L[N] = l;
                R[N] = r;
                C[N] = i;
                N++;
            }
        }
        memset(dp, 0x7f, sizeof(dp));
        if(N == 0) {
            puts("0");
            continue;
        }
        int ret = C[N-1];
        for(i = 0; i < N; i++) {
            int pos[2], cost[2];
            if(i == 0)
                pos[0] = pos[1] = cost[0] = cost[1] = 0;
            else {
                pos[0] = L[i-1];
                pos[1] = R[i-1];
                cost[0] = dp[i-1][0];
                cost[1] = dp[i-1][1];
            }
            int c1, c2;
            c1 = abs(pos[0] - R[i]) + R[i] - L[i] + cost[0];
            c2 = abs(pos[1] - R[i]) + R[i] - L[i] + cost[1];
            dp[i][0] = min(c1, c2);
            c1 = abs(pos[0] - L[i]) + R[i] - L[i] + cost[0];
            c2 = abs(pos[1] - L[i]) + R[i] - L[i] + cost[1];
            dp[i][1] = min(c1, c2);
        }
        ret += min(dp[N-1][0], dp[N-1][1]);
        printf("%d\n", ret);
    }
    return 0;
}

台長: Morris
人氣(1,498) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況) | 個人分類: UVA |
此分類下一篇:[UVA][圓周角] 12395 - Regular Convex Polygon
此分類上一篇:[UVA][DP] 11598 - Optimal Segments

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文