24h購物| | PChome| 登入
2013-10-06 20:43:53| 人氣1,550| 回應0 | 上一篇 | 下一篇

[UVA][概率DP] 11762 - Race to 1

推薦 0 收藏 0 轉貼0 訂閱站台

B

Race to 1

Input: Standard Input

Output: Standard Output

 

Dilu have learned a new thing about integers, which is - any positive integer greater than 1 can be divided by at least one prime number less than or equal to that number. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a prime number less than or equal to D. If D is divisible by the prime number then he divides D by the prime number to obtain new D. Otherwise he keeps the old D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

[We say that an integer is said to be prime if its divisible by exactly two different integers. So, 1 is not a prime, by definition. List of first few primes are 2, 3, 5, 7, 11, …]

 

Input

Input will start with an integer T (T <= 1000), which indicates the number of test cases. Each of the next T lines will contain one integer N (1 <= N <= 1000000).

 

Output

For each test case output a single line giving the case number followed by the expected number of turn required. Errors up to 1e-6 will be accepted.

 

Sample Input                             Output for Sample Input

3

1

3

13

 

Case 1: 0.0000000000

Case 2: 2.0000000000

Case 3: 6.0000000000


Problemsetter: Md. Arifuzzaman Arif

Special Thanks: Sohel Hafiz

題目描述:

給一個數字 N,從 [2, N] 隨機挑一個質數 p,如果 N%p = 0,N = N/p。求嘗試次數的期望值。

題目解法:


很久沒寫概率 DP 了,由於有一次可能嘗試一次不變。

dp[n] = p0*dp[n] + 1 + sigma(p1*dp[n/prime_factor]);


移項之後便可以得到遞迴公式。

其中 p0 表示沒選到質因數的機率,p1 表示每個質因數選到的機率。

#include <stdio.h>
#include <string.h>
#include <vector>
#define maxL (1000000>>5)+1
#define GET(x) (mark[x>>5]>>(x&31)&1)
#define SET(x) (mark[x>>5] |= 1<<(x&31))
using namespace std;
int mark[maxL];
vector<int> pfactor[1000005];
int psum[1000005] = {};
double dp[1000005];
char used[1000005] = {};
void sieve() {
    register int i, j, k;
    SET(1);
    int n = 1000000;
    for(i = 2; i <= n; i++) {
        psum[i] = psum[i-1];
        if(!GET(i)) {
            psum[i]++;
            pfactor[i].push_back(i);
            for(j = i+i; j <= n; j += i) {
                SET(j);
                pfactor[j].push_back(i);
            }
        }
    }
}//d[n]=p0*d[n]+1+p1*d[n/d1]+p1*d[n/d2]...
double dfs(int n) {
    if(n == 1)    return 0;
    if(used[n])    return dp[n];
    used[n] = 1;
    double p0, p1, e = 0;
    p0 = 1-(double)pfactor[n].size()/psum[n];
    p1 = 1.0/psum[n];
    for(int i = pfactor[n].size()-1; i >= 0; i--)
        e += dfs(n/pfactor[n][i])*p1;
    e = (e+1)/(1-p0);
    dp[n] = e;
    return e;
}
int main() {
    sieve();
    int testcase, n, cases = 0;
    scanf("%d", &testcase);
    while(testcase--) {
        scanf("%d", &n);
        printf("Case %d: %.10lf\n", ++cases, dfs(n));
    }
    return 0;
}

台長: Morris
人氣(1,550) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況) | 個人分類: UVA |
此分類下一篇:[UVA][DLX] 211 - The Domino Effect
此分類上一篇:[UVA][插頭DP] 1214 - Manhattan Wiring

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文