24h購物| | PChome| 登入
2013-04-16 21:57:20| 人氣461| 回應0 | 上一篇 | 下一篇

[UVA] 11087 - Divisibility Testing

推薦 0 收藏 0 轉貼0 訂閱站台

I I U P C 2 0 0 6

Problem D: Divisibility Testing

Input: standard input
Output: standard output

 

You will be given a list of n integers, <a1 a2 a3 . . . an> and an integer k. Find out the number of ways of choosing 2 integers (ai, aj), such that ai ≤ aj and 1 ≤ i, j ≤ n and i ≠ j and (ai + aj) is divisible by k. Every pair must be distinct. Two pairs, (a, b) and (c, d), are equal if a is equal to c and b is equal to d.

 

Suppose we are given 5 integers <4 1 2 2 3> and k = 1. There are 7 ways of choosing different pairs that meets the above restrictions.

(1, 2) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4) (3, 4).

 

Input

The first line of input contains an integer T that determines the number of test cases. Each test case contains two lines. The first line consists of two integers n and k. The next line contains n integers. The i-th integer gives the value of ai.

 

Output

For each test case, output the case number followed by the number of ways to choose the pairs.

 

Constraints

-           T < 100
-           1 < n < 100001
-           0 < k < 501
-           |ai| < 10000001 for any i

 

Sample Input

Output for Sample Input

2
5 1
4 1 2 2 3
5 2
4 1 2 2 3

Case 1: 7
Case 2: 3

 

Problemsetter: Sohel Hafiz

sort 過一次,相同的就特別判斷。
由於 k < 501, 特別判斷。

然後直接在 cnt[] 計數即可。



#include <stdio.h>
#include <algorithm>
using namespace std;
int t, n, k, cases = 0;
int A[100005], B[100005];
void RadixSort(int *A, int *B, int n) {
    int a, x, d, *T, C[256];
    for(x = 0; x < 4; x++) {
        d = x*8;
        for(a = 0; a < 256; a++)        C[a] = 0;
        for(a = 0; a < n; a++)        C[(A[a]>>d)&255]++;
        for(a = 1; a < 256; a++)    C[a] += C[a-1];
        for(a = n-1; a >= 0; a--)    B[--C[(A[a]>>d)&255]] = A[a];
        T = A, A = B, B = T;
    }
}
int main() {
    scanf("%d", &t);
    int i, j, k;
    while(t--) {
        scanf("%d %d", &n, &k);
        for(i = 0; i < n; i++)
            scanf("%d", &A[i]);
            //ReadInt(&A[i]);
        //sort(A, A+n);
        RadixSort(A, B, n);
        long long ans = 0;
        if(n > 1 && A[0] == A[1] && (A[0]+A[1])%k == 0)
            ans++;
        for(i = 1, j = 0; i < n; i++) {
            if(A[i] != A[j]) {
                if(i+1 < n && A[i] == A[i+1] && (A[i]+A[i+1])%k == 0)
                    ans++;
                A[++j] = A[i];
            }
        }
        n = j+1;
        int cnt[505] = {};
        for(i = 0; i < n; i++) {
            j = A[i]%k;
            if(j < 0)   j += k;
            if(j)
                ans += cnt[k-j];
            else
                ans += cnt[0];
            cnt[j]++;
        }
        printf("Case %d: %d\n", ++cases, ans);
    }
    return 0;
}

台長: Morris
人氣(461) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][數學] 11027 - Palindromic Permutation
此分類上一篇:[UVA][高斯消去、期望值] 10828 - Back to Kernighan-Ritchie

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文