24h購物| | PChome| 登入
2013-04-07 16:13:54| 人氣142| 回應0 | 上一篇 | 下一篇

[UVA] 552 - Filling the Gaps

推薦 0 收藏 0 轉貼0 訂閱站台


  Filling the Gaps 

At the largest conference on coding and cryptography the following theorem needed a proof or a counterexample: Suppose you are given a set of words of equal length; each word consisting of 0's, 1's and/or *'s. Furthermore suppose the pattern of *'s is different for all words in the set. By this we mean: if you replace all 0's and 1's by say $ you obtain different words.


The claim is: if you replace the *'s by 0's and 1's in all possible ways, then you obtain a set that is at least as big as the set you started with.


Example:

{ 10*, *0*, *00 } produces { 100, 101, 000, 001 }

{ 100, 101, 10* } produces { 100, 101 }


Notice that the set in the latter example does not satisfy the condidtion mentioned above, so it does not provide a counterexample.


You program has to check for a number of cases:

1.
Whether the pattern of *'s is different for all words in the set and:
2.
Compute the number of words obtained by replacing the *'s by 0's and 1's.

The words will not be longer than 15 symbols.

Input 

The input is a text-file that presents a sequence of sets. Each set is described as follows. The first line gives two integers: the length of the words and the number of the words. Then follow the words, each on a separate line. The end of the sequence of sets is indicated by a set with wordlength 0 and number of words equal to 0.

Output 

The output is a textfile that contains one line for each set. if the pattern of *'s is different for all the words in this set this line should contain YES (in uppercase), followed by a space and the number of obtained words, otherwise it should contain NO (uppercase) only.

Sample Input 

3 3
10*
*0*
*00
4 3
1100
1101
110*
0 0

Sample Output 

YES 4
NO
YES 0



Miguel A. Revilla
1998-03-10

懶得用 dfs 改用一下別的做法, 用 bitmask。

#include <stdio.h>
#include <string.h>
int main() {
    int n, m;
    while(scanf("%d %d", &n, &m) == 2) {
        char g[20];
        int A[10000] = {}, B[10000] = {};
        int C[65535] = {};
        int noflag = 0, i, j;
        for(i = 0; i < m; i++) {
            scanf("%s", &g);
            for(j = 0; g[j]; j++) {
                if(g[j] != '*') {
                    A[i] |= (g[j]-'0')*(1<<j);
                    B[i] |= 1<<j;
                }
            }
            C[B[i]]++;
            if(C[B[i]] > 1)
                noflag = 1;
        }
        if(noflag) {
            puts("NO");
            continue;
        }
        memset(C, 0, sizeof(C));
        int mask = (1<<n)-1;
        for(i = (1<<n)-1; i >= 0; i--) {
            for(j = 0; j < m; j++) {
                int x = mask^B[j];
                int y = (x&i)|A[j];
                C[y] = 1;
            }
        }
        int ans = 0;
        for(i = (1<<n)-1; i >= 0; i--)
            ans += C[i];
        printf("YES %d\n", ans);
    }
    return 0;
}

台長: Morris
人氣(142) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][dfs] 614 - Mapping the Route
此分類上一篇:[UVA][dp] 11725 - Colorful Board

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文