24h購物| | PChome| 登入
2013-01-23 18:11:38| 人氣2,546| 回應0 | 上一篇 | 下一篇

[資料結構][作業] dijkstra、矩陣乘法、eigenvalue

推薦 0 收藏 0 轉貼0 訂閱站台



FinalExerciseA-page-001.jpg






FinalExerciseA-page-002.jpg




PartI.cpp



#include <stdio.h>
#include <math.h>
class Matrix {
    public:
        long long v[3][3]; // fixed
        void scan() {
            puts("Input 3x3 matrix: (integer entity)");
            int i, j;
            for(i = 0; i < 3; i++)
                for(j = 0; j < 3; j++)
                    scanf("%lld", &v[i][j]);
        }
        void print() {
            int i, j;
            for(i = 0; i < 3; i++, puts(""))
                for(j = 0; j < 3; j++)
                    printf("%lld ", v[i][j]);
        }
        Matrix operator+(const Matrix &y) {
            Matrix z;
            int i, j;
            for(i = 0; i < 3; i++)
                for(j = 0; j < 3; j++)
                    z.v[i][j] = v[i][j] + y.v[i][j];
            return z;
        }
        Matrix operator*(const Matrix &y) {
            Matrix z;
            int i, j, k;
            for(i = 0; i < 3; i++)
                for(j = 0; j < 3; j++) {
                    z.v[i][j] = 0;
                    for(k = 0; k < 3; k++)
                        z.v[i][j] += v[i][k]*y.v[k][j];
                }
            return z;
        }
        long long det() {
            return v[0][0]*v[1][1]*v[2][2]+v[0][1]*v[1][2]*v[2][0]+v[0][2]*v[1][0]*v[2][1]
                -v[0][2]*v[1][1]*v[2][0]-v[1][2]*v[2][1]*v[0][0]-v[2][2]*v[1][0]*v[0][1];
        }
        void eigenvalue() { // x^3 + ax^2 + bx + c
            long long a, b, c, ta, tb, tc;
            a = -(v[0][0]+v[1][1])-v[2][2];
            b = v[0][0]*v[1][1]+v[2][2]*(v[0][0]+v[1][1])-v[0][2]*v[2][0]-v[1][2]*v[2][1]-v[0][1]*v[1][0];
            c = -v[0][0]*v[1][1]*v[2][2]+v[0][2]*v[1][1]*v[2][0]+v[0][0]*v[1][2]*v[2][1]+v[0][1]*v[1][0]*v[2][2]
                -v[0][1]*v[2][0]*v[1][2]-v[0][2]*v[1][0]*v[2][1];
            printf("Characteristic polynomial: x^3 + %lldx^2 + %lldx + %lld\n", a, b, c);
            printf("eigenvalue = ");
            tc = c;
            if(c < 0)   tc = -c;
            for(long long i = -tc; i <= tc; i++) {
                if(i == 0 || c%i == 0) {
                    if(i*i*i+a*i*i+b*i+c == 0) {
                        printf("%lf ", (double)i);
                        ta = a+i;
                        tb = b+a*i+i*i;
                        if(ta*ta-4*tb < 0)//bb-4ac
                            break;
                        printf("%lf %lf", (double)(-ta-sqrt(ta*ta-4*tb))/2.0
                                , (double)(-ta+sqrt(ta*ta-4*tb))/2.0);
                        break;
                    }
                }
            }
            puts("");
        }
};
int main() {
    Matrix A, B, C, D;
    A.scan();
    B.scan();
    C = A+B;
    puts("------");
    puts("1. A+B"), C.print();
    D = A*B;
    puts("------");
    puts("2. AB"), D.print();
    puts("------");
    puts("3. det(AB)"), printf(" = %lld\n", D.det());
    puts("------");
    puts("4. Find Matrix A & Matrix B's eigenvalues");
    puts("A : ");
    A.eigenvalue();
    puts("B : ");
    B.eigenvalue();
    return 0;
}
/*
3 0 -1
2 3 1
-3 4 5
1 2 2
3 -2 1
0 1 1
*/


PartII.cpp


#include <stdio.h>
#include <stdlib.h>
int g[7][7] = { // adjacency matrix
    {0,1,2,0,1,0,0}, // A
    {1,0,0,3,0,0,0}, // B
    {2,0,0,0,1,2,0}, // C
    {0,3,0,0,0,1,0}, // D
    {1,0,1,0,0,0,5}, // E
    {0,0,2,1,0,0,3}, // F
    {0,0,0,0,5,3,0}, // G
};
//<BFS>
#define SIZE 128
void BFS() {
    int i;
    int QUEUE[SIZE], front = 0, rear = 0;
    int preND[SIZE], visited[SIZE];
    for(i = 0; i < 7; i++)
        visited[i] = 0;
    QUEUE[0] = 0, preND[0] = -1, visited[0] = 1; // A
    while(front <= rear) {
        int from = QUEUE[front];
        for(i = 0; i < 7; i++) {
            if(g[from][i] != 0 && visited[i] == 0) {
                preND[i] = from;
                visited[i] = 1;
                QUEUE[++rear] = i;
                //<print path>
                int buffer[SIZE], idx = 0, nd = i;
                while(nd != -1)
                    buffer[idx++] = nd, nd = preND[nd];
                for(idx--; idx >= 0; idx--) {
                    printf("%c", buffer[idx]+'A');
                    if(idx) printf("->");
                }
                puts("");
                //</print path>
            }
        }
        front++;
    }
    puts("Search Terminated");
    printf("Final Path: ");
    //<print path>
    int buffer[SIZE], idx = 0, nd = 6;
    while(nd != -1)
        buffer[idx++] = nd, nd = preND[nd];
    for(idx--; idx >= 0; idx--) {
        printf("%c", buffer[idx]+'A');
        if(idx) printf("->");
    }
    puts("");
    //</print path>
}
//</BFS>
//<Dijkstra>
void Dijkstra() {
    int D[SIZE], preND[SIZE], used[SIZE];
    int i, j;
    for(i = 0; i < 7; i++)
        D[i] = 0xffff, used[i] = 0;
    D[0] = 0, preND[0] = -1, used[0] = 1;
    for(i = 0; i < 7; i++) {
        if(g[0][i]) {
            if(D[i] > D[0]+g[0][i]) {
                D[i] = D[0]+g[0][i];
                preND[i] = 0;
            }
        }
    }
    for(i = 0; i < 7-1; i++) {
        int mn = 0xffff, next = -1;
        for(j = 0; j < 7; j++) {
            if(used[j] == 0 && D[j] < mn)
                mn = D[j], next = j;
        }
        for(j = 0; j < 7; j++) {
            if(g[next][j]) {
                if(D[j] > D[next]+g[next][j]) {
                    D[j] = D[next]+g[next][j];
                    preND[j] = next;
                }
            }
        }
        used[next] = 1;
        //<print path>
        int buffer[SIZE], idx = 0, nd = next;
        while(nd != -1)
            buffer[idx++] = nd, nd = preND[nd];
        for(idx--; idx >= 0; idx--) {
            printf("%c", buffer[idx]+'A');
            if(idx) printf("->");
        }
        //</print path>
        printf(" cost:%d\n", D[next]);
    }
    puts("Search Terminated");
    printf("Final Path: ");
    int buffer[SIZE], idx = 0, nd = 6;
    while(nd != -1)
        buffer[idx++] = nd, nd = preND[nd];
    for(idx--; idx >= 0; idx--) {
        printf("%c", buffer[idx]+'A');
        if(idx) printf("->");
    }
    //</print path>
    printf(" total cost:%d\n", D[6]);
}
//</Dijkstra>
int main() {
    BFS();
    puts("=====");
    Dijkstra();
    system("pause");
    return 0;
}

台長: Morris
人氣(2,546) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: 其他題目 |
此分類下一篇:[編譯器][作業][2014Update] NFA to DFA
此分類上一篇:[線性代數][作業] Gram Schmidt Process

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文