24h購物| | PChome| 登入
2012-12-21 21:03:34| 人氣616| 回應0 | 上一篇 | 下一篇

[UVA][graph] 11175 - From D to E and Back

推薦 0 收藏 0 轉貼0 訂閱站台

Problem A
From D to E and back
Input: Standard Input

Output: Standard Output

 

Anyone who goes to a psychiatrist ought to have his head examined.

Samuel Goldwyn

Take any directed graph D with n vertices and m edges. You can make the Lying graph E of D in the following way. E will have m vertices, one for each edge of D. For example, if D has an edge uv, then E will have a vertex called uv. Now, whenever D has edges uv and vw, E will have an edge from vertex uv to vertex vw. There are no other edges in E.

You will be given a graph E and will have to determine whether it is possible for E to be the Lying graph of some directed graph D.

Input

The first line of input gives the number of cases, N (N<220). N test cases follow. Each one starts with two lines containing m (0≤m≤300) and k. The next k lines will each contain a pair of vertices, x and y, meaning that there is an edge from x to y in E. The vertices are numbered from 0 to m-1

Output

For each test case, output one line containing "Case #x:" followed by either "Yes" or "No", depending on whether E is a valid Lying graph or not. Note that D is allowed to have duplicate edges and self-edges.

Sample Input                                  Output for Sample Input

4
2
1
0 1
5
0
4
3
0 1
2 1
2 3
3
9
0 1
0 2
1 2
1 0
2 0
2 1
0 0
1 1
2 2
Case #1: Yes
Case #2: Yes
Case #3: No
Case #4: Yes
 

 


Problem setter: Igor Naverniouk

Special Thanks: Joachim Wulff



全部檢查,對於 E 圖中的節點 v,所有指向 v 的節點,而這些節點必然指向同一個集合。

#include <stdio.h>
#include <algorithm>
using namespace std;
int g[305][305], gt[305];
int invg[305][305], invgt[305], to[305];
int check(int n) {
    int i, j, k;
    for(i = n-1; i >= 0; i--) {
        for(j = 0; j < n; j++)  to[j] = 0;
        for(j = invgt[i]-1; j >= 0; j--) {
            for(k = gt[invg[i][j]]-1; k >= 0; k--) {
                to[g[invg[i][j]][k]]++;
            }
        }
        for(j = 0; j < n; j++) {
            if(to[j] == 0 || to[j] == invgt[i])
                {}
            else
                return 0;
        }
    }
    return 1;
}
int main() {
    int t, cases = 0;
    int n, m, i, x, y;
    scanf("%d", &t);
    while(t--) {
        scanf("%d %d", &n, &m);
        for(i = 0; i < n; i++)
            gt[i] = 0, invgt[i] = 0;
        while(m--) {
            scanf("%d %d", &x, &y);
            g[x][gt[x]++] = y;
            invg[y][invgt[y]++] = x;
        }
        int flag = check(n);
        printf("Case #%d: %s\n", ++cases, flag ? "Yes" : "No");
    }
    return 0;
}

台長: Morris
人氣(616) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA][進制轉換] 276 - Egyptian Multiplication
此分類上一篇:[UVA][塊狀表] 12003 - Array Transformer

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文