24h購物| | PChome| 登入
2012-05-31 08:11:28| 人氣577| 回應0 | 上一篇 | 下一篇

[ACM-ICPC][樹形DP] 2038 - Strategic game

推薦 0 收藏 0 轉貼0 訂閱站台

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

For example for the tree:

the solution is one soldier (at the node 1).

Input 

The input file contains several data sets in text format. Each data set represents a tree with the following description:
  • the number of nodes
  • the description of each node in the following format:
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 … node_identifiernumber_of_roads
    or
    node_identifier:(0)
  • The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n ≤ 1500). Every edge appears only once in the input data.

    Output 

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers).

    Sample Input 

    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)
    

    Sample Output 

    1
    2

    dp[子樹的根][是否擺放]
    dp[][0] 不擺放, 則 dp[][0] += dp[所有子節點][1]
    dp[][1] 擺放, 則 dp[][1] += dp[所有子節點的]min([0], [1]);
    最後 dp[][1] += 1;

    #include <stdio.h>
    #include <vector>
    #define min(x, y) ((x) < (y) ? (x) : (y))
    using namespace std;
    struct Arc {
    int to;
    };
    vector<Arc> nd[2000];
    int dp[2000][2], used[2000];
    int dfs(int node) {
    used[node] = 1;
    dp[node][0] = 0;
    dp[node][1] = 1;
    for(vector<Arc>::iterator i = nd[node].begin(); i != nd[node].end(); i++) {
    if(used[i->to] == 0) {
    dfs(i->to);
    dp[node][0] += dp[i->to][1];
    dp[node][1] += min(dp[i->to][0], dp[i->to][1]);
    }
    }
    return min(dp[node][0], dp[node][1]);
    }
    int main() {
    int n, m, st, ed, i;
    while(scanf("%d", &n) == 1) {
    for(i = 0; i < n; i++)
    nd[i].clear(), used[i] = 0;
    Arc tmp;
    for(i = 0; i < n; i++) {
    scanf("%d: (%d)", &st, &m);
    while(m--) {
    scanf("%d", &ed);
    tmp.to = ed;
    nd[st].push_back(tmp);
    tmp.to = st;
    nd[ed].push_back(tmp);
    }
    }
    printf("%d\n", dfs(0));
    }
    return 0;
    }
     


    台長: Morris
    人氣(577) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
    全站分類: 不分類 | 個人分類: UVA |
    此分類下一篇:[UVA][spfa] 104 - Arbitrage
    此分類上一篇:[UVA][幾何] 11343 - Isolated Segments

    是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
    * 請輸入識別碼:
    請輸入圖片中算式的結果(可能為0) 
    (有*為必填)
    TOP
    詳全文