24h購物| | PChome| 登入
2012-05-13 09:02:31| 人氣828| 回應0 | 上一篇 | 下一篇

[UVA][Math] 1264 - Binary Search Tree

推薦 0 收藏 0 轉貼0 訂閱站台

A binary search tree is a binary tree. It may be empty. If it is not empty, it satisfies the following properties:

(1)
Every node has a key, and no two nodes have the same key.
(2)
The keys in a nonempty left subtree must be smaller than the key in the root of the subtree.
(3)
The keys in a nonempty right subtree must be larger than the key in the root of the subtree.
(4)
The left and right subtrees are also binary search trees.

Sample binary search trees are shown in Figure 1.

epsfbox{p4847.eps}

Figure 1. binary search trees

To search for a node with a key k in a binary search tree T, we begin at the root. If T is empty, T contains no keys and the search is unsuccessful. Otherwise, we compare k with the key in root. If k equals root's key, then the search terminates successfully. If k is less than root's key, we search the left subtree of the root. If k is larger than root's key, we search the right subtree of the root. In the same way, we can proceed the search in the left or right subree of T.

To insert a new key k into a binary search tree T where k is different from those of existing keys in T, we first search the tree T. The search will be unsuccessful, then we insert the key at the point the search terminated. For instance, to insert a key 80 into the Figure 1(a), we first search the tree for 80. This search terminates unsuccessfully, and the last node examined has key 40. We insert a new node containing 80 as the right child of the node. The resulting search tree is shown in Figure 1(b).

In this problem, we consider binary search trees with N keys 1, 2,..., N. For a permutation a1 a2 ... aN of {1, 2,..., N}, inserting a1 a2 ... aN successively into an initially empty binary search tree will produce a binary search tree. For instance, the permutation 2 1 4 3 5 will produce the tree in Figure 1(c). Also, 2 4 3 1 5 will produce the same tree. Actually, 8 permutations among all possible permutations of 1, 2, 3, 4, 5 will produce the same tree to the tree in Figure 1(c).

We are interested in finding the number of permutations of {1, 2,..., N} such that all those permutations produce a binary search tree identical to the tree produced by a given permutation P. Given N and P, you are to write a program that calculates the number of permutations satisfying the above condition.

Input 

Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line. Each test case starts with a line containing an integer N representing the number of keys, 1$ le$N$ le$20. In the next line, a permutation of length N is given. There is a single space between the integers representing keys in the permutation.

Output 

Your program is to write to standard output. Print exactly one line for each test case as follows: Let B be the number of permutations that produce the binary search tree identical to the tree produced by the input permutation. Print B mod 9, 999, 991 for each test case. For example, if B = 20, 000, 000, the output should be 18 for that test case.

The following shows sample input and output for three test cases.

Sample Input 

3
5
2 1 4 3 5
4
2 4 1 3
12
1 2 3 4 5 6 7 8 9 10 11 12

Sample Output 

8
3
1


詢問有幾種排法, 跟指定輸入的產生的 BST 長得一樣,
很明顯得, 這是一個排列組合問題,
[parent]-[left]-[right]
對於一個父節點而言, left 的節點個數 x, right 的節點個數 y,
則排法 C(x+y, x), 因此對於每個節點都這麼做, 便可得到答案

#include <stdio.h>
typedef struct{
    int l, r, v, p;
    int total;
} Node;
Node bnode[21];
int bsize;
int main() {
    int t, n, i, j, x;
    scanf("%d", &t);
    long long pascal[21][21] = {};
    pascal[0][0] = 1;
    for(i = 1; i <= 20; i++) {
        pascal[i][0] = 1;
        for(j = 1; j <= i; j++)
            pascal[i][j] = pascal[i-1][j] + pascal[i-1][j-1];
    }
    while(t--) {
        scanf("%d", &n);
        scanf("%d", &bnode[0].v);
        bnode[0].l = bnode[0].r = 0;
        bnode[0].p = -1;
        bnode[0].total = 1;
        bsize = 0;
        for(i = 1; i < n; i++) {
            scanf("%d", &x);
            int idx = 0;
            while(true) {
                bnode[idx].total++;
                if(bnode[idx].v > x) {
                    if(bnode[idx].l) {
                        idx = bnode[idx].l;
                    } else {
                        bnode[idx].l = ++bsize;
                        break;
                    }
                } else {
                    if(bnode[idx].r) {
                        idx = bnode[idx].r;
                    } else {
                        bnode[idx].r = ++bsize;
                        break;
                    }
                }
            }
            bnode[bsize].v = x;
            bnode[bsize].l = bnode[bsize].r = 0;
            bnode[bsize].p = idx;
            bnode[bsize].total = 1;
        }
        long long ans = 1;
        int x, y;
        for(i = 0; i < n; i++) {
            if(bnode[i].p != -1) {
                if(bnode[bnode[i].p].r == i) {
                    if(bnode[bnode[i].p].l) {
                        x = bnode[i].total;
                        y = bnode[bnode[bnode[i].p].l].total;
                        ans *= pascal[x+y][y];
                        ans %= 9999991;
                    }
                }
            }
        }
        printf("%lld\n", ans);
    }
    return 0;
}

台長: Morris
人氣(828) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類 | 個人分類: UVA |
此分類下一篇:[UVA] 11530 - SMS Typing
此分類上一篇:[UVA][Math] 10338 - Mischievous Children

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文