24h購物| | PChome| 登入
2012-05-03 21:43:28| 人氣647| 回應0 | 上一篇 | 下一篇

[UVA][ST] 100 - The 3n + 1 problem

推薦 0 收藏 0 轉貼0 訂閱站台


 The 3n + 1 problem 

Background

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:

 
		1. 		 input n

2. print n

3. if n = 1 then STOP

4. if n is odd then tex2html_wrap_inline44

5. else tex2html_wrap_inline46

6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174


線段樹的版本, 如果有初學者查到本篇文章時, 請不要嚇到

#include <stdio.h>

#include <string.h>
#define max(x, y) ((x) > (y) ? (x) : (y))
#define swap(x, y) {int tmp; tmp = x, x = y, y = tmp;}
#define N 1000000
#define node 1048576
int A[N+1], tree[node<<1];
void setTree(int l, int r, int k) {
    if(l == r)
        tree[k] = A[l];
    if(l < r) {
        int m = (l+r) >> 1;
        setTree(l, m, k<<1);
        setTree(m+1, r, (k<<1)+1);
        tree[k] = max(tree[k<<1], tree[(k<<1)+1]);
    }
}
int getTree(int l, int r, int k, int i, int j) {
    if(l == i && r == j)
        return tree[k];
    if(l < r) {
        int m = (l+r) >> 1;
        if(m >= j)
            return getTree(l, m, k<<1, i, j);
        else if(m < i)
            return getTree(m+1, r, (k<<1)+1, i, j);
        else
            return max(getTree(l, m, k<<1, i, m), getTree(m+1, r, (k<<1)+1, m+1, j));
    }
}
void build() {
    long long n;
    int i, len;
    memset(A, 0, sizeof(A));
    memset(tree, 0, sizeof(tree));
    A[1] = 1;
    for(i = 2; i <= N; i++) {
        n = i, len = 1;
        while(n != 1) {
            if(n&1) {
                n = n*3 + 1;
            } else {
                n >>= 1;
            }
            if(n < N && A[n] != 0) {
                len += A[n];
                break;
            }
            len ++;
        }
        A[i] = len;
    }
    setTree(1, N, 1);
}
int main() {
    build();
    int i, j;
    while(scanf("%d %d", &i, &j) == 2) {
        printf("%d %d ", i, j);
        if(i > j)
            swap(i, j);
        printf("%d\n", getTree(1, N, 1, i, j));
    }
    return 0;
}


台長: Morris
人氣(647) | 回應(0)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 不分類

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文