24h購物| | PChome| 登入
2013-08-20 07:31:17| 人氣261| 回應8 | 上一篇 | 下一篇

數字 撲朔迷您 49

推薦 0 收藏 0 轉貼0 訂閱站台

迷圓周率的101猜想

一組自然數數列,具有形式: 101,1001,10001,,.. 100…0001,...(兩個1之間有1個0或1個以上的0)之中,唯一質數為101.

先從畢氏三元數說起...

畢氏三元數(Pythagorean triple),是由三個正整數組成的數組(a, b, c);
若「a^2 + b^2 = c^2 」成立,則 (a, b, c) 是畢氏三元數。
-例如 3^2 + 4^2 = 5^2 成立,則 (3, 4 , 5) 是畢氏三元數。


迷圓周率的101第二猜想
101,10001,1000001,…100…0001,… (奇數個0)的所有大於1的因數,皆為畢氏三元數的c^2.

迷圓周率的101猜想-延伸篇

假設100...001 (N個0,N≧1)可以被X 整除.
則100...001 {[N + 2K(N+1)]個0,N ≧1 ,K≧0, K為正整數}
必可以被X 整除.

台長: 拜足
人氣(261) | 回應(8)| 推薦 (0)| 收藏 (0)| 轉寄
全站分類: 教育學習(進修、留學、學術研究、教育概況) | 個人分類: 益智 |
此分類下一篇:數字 撲朔迷您 50
此分類上一篇:數字 撲朔迷您 48

拜足
100^33+1={{89,1},{101,1},{9901,1},{1052788969,1},{1056689261,1},{5419170769,1},{789390798020221,1},{2361000305507449,1}}

100^34+1={{73,1},{137,1},{152533657,1},{65552746171882583264230070868884366877803237222654400793,1}}

100^35+1={{29,1},{101,1},{281,1},{421,1},{3541,1},{27961,1},{3471301,1},{13489841,1},{121499449,1},{60368344121,1},{848654483879497562821,1}}

100^36+1={{17,1},{8929,1},{5882353,1},{9999999900000001,1},{111994624258035614290513943330720125433979169,1}}

100^37+1={{101,1},{149,1},{3109,1},{111149,1},{708840373781,1},{669031686661427842829,1},{40548140514062774758071840361,1}}

100^38+1={{73,1},{137,1},{457,1},{1403417,1},{5240808656722481737,1},{297478330786365628414805305290302483555043017,1}}

100^39+1={{101,1},{521,1},{3121,1},{9901,1},{53397071018461,1},{1900381976777332243781,1},{6060517860310398033985611921721,1}}

100^40+1={{353,1},{449,1},{641,1},{1409,1},{69857,1},{1634881,1},{18453761,1},{947147262401,1},{349954396040122577928041596214187605761,1}}

100^41+1={{101,1},{68389,1},{1447745997018511893740076606031686237538345362413531560645573104006506749609,1}}

100^42+1={{73,1},{137,1},{7841,1},{99990001,1},{11189053009,1},{603812429055411913,1},{127522001020150503761,1},{148029423400750506553,1}}

100^43+1={{101,1},{338669,1},{2923500556298303355222653948542706598448925085853709961673200056984872843366529,1}}

100^44+1={{17,1},{5882353,1},{10100113,1},{9900879227786858424257223656804730798555422102713108259184822982673560177,1}}

100^45+1={{61,1},{101,1},{181,1},{3541,1},{9901,1},{27961,1},{4188901,1},{39526741,1},{999999000001,1},{4999437541453012143121,1},{1105097795002994798105101,1}}
2013-09-26 07:02:56
拜足
100^17+1={{101,1},{28559389,1},{1491383821,1},{2324557465671829,1}}

100^18+1={{73,1},{137,1},{3169,1},{98641,1},{99990001,1},{3199044596370769,1}}

100^19+1={{101,1},{722817036322379041,1},{1369778187490592461,1}}

100^20+1={{17,1},{5070721,1},{5882353,1},{19721061166646717498359681,1}}

100^21+1={{29,1},{101,1},{281,1},{9901,1},{226549,1},{121499449,1},{4458192223320340849,1}}

100^22+1={{73,1},{137,1},{617,1},{16205834846012967584927082656402106953,1}}

100^23+1={{101,1},{1289,1},{18371524594609,1},{4181003300071669867932658901,1}}

100^24+1={{97,1},{353,1},{449,1},{641,1},{1409,1},{69857,1},{206209,1},{66554101249,1},{75118313082913,1}}

100^25+1={{101,1},{3541,1},{27961,1},{60101,1},{7019801,1},{14103673319201,1},{1680588011350901,1}}

100^26+1={{73,1},{137,1},{1580801,1},{632527440202150745090622412245443923049201,1}}

100^27+1={{101,1},{109,1},{9901,1},{153469,1},{999999000001,1},{59779577156334533866654838281,1}}

100^28+1={{17,1},{113,1},{5882353,1},{73765755896403138401,1},{119968369144846370226083377,1}}

100^29+1={{101,1},{349,1},{38861,1},{618049,1},{11811806375201836408679635736258669583187541,1}}

100^30+1={{73,1},{137,1},{1676321,1},{99990001,1},{5964848081,1},{100009999999899989999000000010001,1}}

100^31+1={{101,1},{2049349,1},{483128549554512237305554588359039822397307149685578249,1}}

100^32+1={{1265011073,1},{15343168188889137818369,1},{515217525265213267447869906815873,1}}
2013-09-26 07:03:43
拜足
100^1+1={{101,1}}

100^2+1={{73,1},{137,1}}

100^3+1={{101,1},{9901,1}}

100^4+1={{17,1},{5882353,1}}

100^5+1={{101,1},{3541,1},{27961,1}}

100^6+1={{73,1},{137,1},{99990001,1}}

100^7+1={{29,1},{101,1},{281,1},{121499449,1}}

100^8+1={{353,1},{449,1},{641,1},{1409,1},{69857,1}}

100^9+1={{101,1},{9901,1},{999999000001,1}}

100^10+1={{73,1},{137,1},{1676321,1},{5964848081,1}}

100^11+1={{89,1},{101,1},{1052788969,1},{1056689261,1}}

100^12+1={{17,1},{5882353,1},{9999999900000001,1}}

100^13+1={{101,1},{521,1},{1900381976777332243781,1}}

100^14+1={{73,1},{137,1},{7841,1},{127522001020150503761,1}}

100^15+1={{61,1},{101,1},{3541,1},{9901,1},{27961,1},{4188901,1},{39526741,1}}

100^16+1={{19841,1},{976193,1},{6187457,1},{834427406578561,1}}
2013-09-26 07:04:42
拜足
"如果能用一個方法得到兩個400位的質數(不是那種 special 的質數)...那這兩個數...至少可賣一億美金以上...RSA(非對稱密鑰密碼演算法)... "

也許我有一個方法,再加上你的運算神力,是有可能的,不妨一試.

迷圓周率的101猜想
2015-04-11 12:26:27
拜足
這是之前我的提問.

1/487 為一個循環小數,請問循環節是多少?

你的答案是 486位!!!

你還算出循環節是 0020533...137577 (486位)

487是 100...001(242個0)的因數.
487^2也是 100...001(242個0)的因數.
2015-05-09 10:10:47
拜足
correction:

迷圓周率的101第二猜想 101,10001,1000001,…100…0001,… (奇數個0)的所有大於1的因 數,皆為畢氏三元數的c^2
2015-07-15 21:42:16
拜足
100^2+1={{73,1},{137,1}}
100^4+1={{17,1},{5882353,1}}
100^8+1={{353,1},{449,1},{641,1},{1409,1},{69857,1}}
100^16+1={{19841,1},{976193,1},{6187457,1},{834427406578561,1}}
100^32+1={{1265011073,1},{15343168188889137818369,1},{515217525265213267447869906815873,1}}

不重複質數
2015-08-29 09:07:05
拜足
100^1+1={{101,1}}
100^3+1={{101,1},{9901,1}}
100^7+1={{29,1},{101,1},{281,1},{121499449,1}}
100^15+1={{61,1},{101,1},{3541,1},{9901,1},{27961,1},{4188901,1},{39526741,1}}
100^31+1={{101,1},{2049349,1},{483128549554512237305554588359039822397307149685578249,1}}

101之外,不重複質數
2015-08-29 09:11:03
是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文