24h購物| | PChome| 登入
2018-10-08 11:54:18| 人氣884| 回應0 | 上一篇 | 下一篇

AI演算法

推薦 1 收藏 0 轉貼0 訂閱站台

類神經網路(ANN)發展20幾年,一直沒有進展,其預測的精確度只能達到60%~70%,這幾年因大數據和電腦硬體計算能力的提升,使用ANN來做預測,準確度已達升到90%~99%,我們就稱它做機器深度學習的AI

          ANN由神經元組成,其架構有一輸入層,數個隱藏的處理層,和一個輸出層。每個神經元對另一個神經元的影響力,視其權重而定,當我們餵入大量資料,經過處理層的處理(就是調整其權重大小),而得到最小誤差的輸出。這個過程就是學習,而多層次處理,可由下而上,逐步堆疊,抽取高抽象層次特徵值,就像是處理更高維度的自變數一般。

          現今實用ANN主要演算法有

  1. 卷積神經網路(CNN),透過篩選、過濾、壓縮,來減少層與層之間信息傳遞,可增快運算速度,通常用於圖形辨識、人臉辨識、物件偵測、電腦視覺。

  2. 遞歸神經網路(RNN),是指考慮時間序列處理連續性串列對串列的一種運算,通常用於機器翻譯、語音辨識、本文辨識、語音合成、自然語言處理等方面。

現今的谷哥,亞馬遜和微軟,皆有提供套件,使用者可輕易拿來使用,AI的發展,其實已在我們身邊。

台長: 王維

您可能對以下文章有興趣

人氣(884) | 回應(0)| 推薦 (1)| 收藏 (0)| 轉寄
全站分類: 心情日記(隨筆、日記、心情手札)

是 (若未登入"個人新聞台帳號"則看不到回覆唷!)
* 請輸入識別碼:
請輸入圖片中算式的結果(可能為0) 
(有*為必填)
TOP
詳全文