※太 陽 系※
太陽系是一個受太陽重力約束在一起的行星系統,包括太陽以及直接或間接圍繞太陽運動的天體。在直接圍繞太陽運動的天體中,最大的八顆被稱為行星,其餘的天體要比行星小很多,比如矮行星、太陽系小行星和彗星。軌道間接圍繞太陽運動的天體是衛星,其中有兩顆比最小的行星水星還要大。
太陽系的形成大約始於46億年前一個巨型星際分子雲的重力塌縮。太陽系內大部分的質量都集中於太陽,餘下的天體中,質量最大的是木星。位於太陽系內側的是四顆較小的行星,分別是水星、金星、地球和火星,它們被稱為類地行星,主要由岩石和金屬構成。外側的四顆行星被稱為巨行星,其質量比類地行星要大得多。其中最大的兩顆是木星和土星,它們都是氣態巨行星,主要成分是氫和氦。最外側的兩顆行星是天王星和海王星,它們是冰巨星,主要由一些熔點比氫和氦更高的揮發成分組成,比如水、氨和甲烷。幾乎所有的行星都在靠近黃道平面的圓軌道上運行。
太陽系也包含一些較小的天體位於火星和木星軌道之間的主小行星帶,其中的大部分天體都是像類地行星那樣由岩石和金屬組成。在海王星軌道之外是古柏帶和離散盤,包含了有大量的海王星外天體,主要由冰組成,再往外還有新發現的類塞德娜天體(sednoid)。在這些天體中,有幾十甚至上萬顆足夠大的天體,能靠自身的重力形成球體,這些天體被稱為為矮行星。已經被確認是矮行星的包括小行星帶的穀神星,和海王星外天體的冥王星和鬩神星。除了這兩個區域,還有大量的小型天體自由的運動在兩個區域之間,包括彗星,還有半人馬小行星和行星際塵雲。有6顆行星、4顆以上的矮行星和一些小天體都有天然的衛星環繞著。通常都依據月球被稱為衛星。太陽系外側的每顆行星都被由塵埃和小天體構成的行星環環繞著。
太陽風是向太陽外流出的帶電粒子流,在星際物質中形成了一個氣泡狀區域,被稱為太陽圈(或日球層)。日球層頂是太陽風和星際物質的壓力達到平衡的位置,它延伸到離散盤的邊緣。歐特雲,被認為是長週期彗星的來源地,其位置可能比日球層頂還要遠1000多倍。太陽系位於銀河系的獵戶臂上,與銀河系中心的距離約26,000光年。
軌道環繞太陽的天體被分為三類:行星、矮行星、和太陽系小天體。
行星是環繞太陽且質量夠大的天體。這類天體:
1.有足夠的質量使本身的形狀成為球體;
2.有能力清空鄰近軌道的小天體。
能成為行星的天體有8個:水星、金星、地球、火星、木星、土星、天王星和海王星。
在2006年8月24日,國際天文聯合會重新定義行星這個名詞,首次將冥王星排除在大行星外,並將冥王星、穀神星和鬩神星組成新的分類:矮行星。矮行星不需要將鄰近軌道附近的小天體清除掉,其他可能成為矮行星的天體還有塞德娜、厄耳枯斯、和創神星。從第一次發現的1930年直至2006年,冥王星被當成太陽系的第九顆行星。但是在20世紀末期和21世紀初,許多與冥王星大小相似的天體在太陽系內陸續被發現,特別是鬩神星更明確的被指出比冥王星大。
環繞太陽運轉的其他天體都屬於太陽系小天體。
衛星(如月球之類的天體),由於不是環繞太陽而是環繞行星、矮行星或太陽系小天體,所以不屬於太陽系小天體。
天文學家在太陽系內以天文單位(AU)來測量距離。1AU是地球到太陽的平均距離,大約是149,597,871公里(92,955,807英里)。冥王星與太陽的距離大約是39AU,木星則約是5.2AU。最常用在測量恆星距離的長度單位是光年,1光年大約相當於63,240天文單位。行星與太陽的距離以公轉週期為週期變化著,最靠近太陽的位置稱為近日點,距離最遠的位置稱為遠日點。
有時會將太陽系非正式地分成幾個不同的區域:「內太陽系」,包括四顆類地行星和主要的小行星帶;其餘的是「外太陽系」,包含小行星帶之外所有的天體。其它的定義還有海王星以外的區域,而將四顆大型行星稱為「中間帶」。
在歷史上的很長一段時期,人類都沒有認識或理解到太陽系的概念。直到中世紀晚期的文藝復興時代,大多數人仍認為地球是靜止不動的,處於宇宙的中心,與那些穿過天空的物體是截然不同的。古希臘的哲學家阿里史塔克斯曾經推測了日心說體系,但是,直到尼古拉·哥白尼才提出了第一個日心說宇宙的數學模型。到了17世紀,伽利略·伽利萊、約翰內斯·克卜勒和艾薩克·牛頓拓展了人們對物理學的理解,人們開始普遍接受地球圍繞太陽運動的觀念,認為地球和其他行星遵循同樣的物理規律。望遠鏡的發明,使人們發現了更多的行星和衛星。望遠鏡改進和無人太空飛行器的應用,使人們得以對其他行星的地質現象進行研究,比如山、坑穴等,另外還可以氣象現象進行觀察,比如雲、沙塵暴和冰帽等。
太陽系的第一次探測是由望遠鏡開啟的,始於天文學家首度開始繪製這些因光度暗淡而肉眼看不見的天體之際。
伽利略是第一位發現太陽系天體細節的天文學家。他發現月球的火山口,太陽的表面有黑子,木星有4顆衛星環繞著。惠更斯追隨著伽利略的發現,發現土星的衛星泰坦和土星環的形狀。後繼的喬凡尼·多美尼科·卡西尼發現了4顆土星的衛星,還有土星環的卡西尼縫、木星的大紅斑。
愛德蒙·哈雷認識到在1705年出現的彗星,實際上是每隔75-76年就會重複出現的一顆彗星,現在稱為哈雷彗星。這是除了行星之外的天體會圍繞太陽公轉的第一個證據。
1781年,威廉·赫歇耳在觀察一顆它認為的新彗星時,戒慎恐懼的宣布在金牛座發現了彗星。事實上,它的軌道顯示是一顆行星,天王星,這是第一顆被發現的行星。
1801年,朱塞普·皮亞齊發現穀神星,這是位於火星和木星軌道之間的一個小世界,而一開始他被當成一顆行星。然而,接踵而來的發現使在這個區域內的小天體多達數以萬計,導致他們被重新歸類為小行星。
到了1846年,天王星軌道的誤差導致許多人懷疑是不是有另一顆大行星在遠處對它施力。埃班·勒維耶的計算最終導致了海王星的發現。在1859年,因為水星軌道的近日點有一些牛頓力學無法解釋的微小運動(「水星近日點進動」),因而有人假設有一顆水內行星祝融星(中文常譯為「火神星」)存在;但這一運動最終被證明可以用廣義相對論來解釋,但某些天文學家仍未放棄對「水內行星」的探尋。
為解釋外行星軌道明顯的偏差,帕西瓦爾·羅威爾認為在其外必然還有一顆行星存在,並稱之為X行星。在他過世後,他的羅威爾天文台繼續搜尋的工作,終於在1930年由湯博發現了冥王星。但是,冥王星是如此的小,實在不足以影響行星的軌道,因此它的發現純屬巧合。就像穀神星,他最初也被當作行星,但是在鄰近的區域內發現了許多大小相近的天體,因此在2006年冥王星被國際天文學聯合會重新分類為矮行星。
在1992年,夏威夷大學的天文學家大衛·朱維特和麻省理工學院的珍妮·劉發現1992 QB1,被證明是一個冰冷的、類似小行星帶的新族群,也就是現在所知的古柏帶,冥王星和凱倫都只是其中的成員。
米高·布朗、乍德·特魯希略和大衛·拉比諾維茨在2005年宣布發現的鬩神星是比冥王星大的離散盤上天體,是在海王星之後繞行太陽的最大天體。
自從進入太空時代,許多的探測都是各國的太空機構所組織和執行的無人太空船探測任務。
太陽系內所有的行星都已經被由地球發射的太空船探訪,進行了不同程度的各種研究。雖然都是無人的任務,人類還是能觀看到所有行星表面近距離的照片,在有登陸艇的情況下,還進行了對土壤和大氣的一些實驗。
第一個進入太空的人造天體是前蘇聯在1957年發射的史潑尼克一號,成功的環繞地球一年之久。美國在1959年發射的探險家6號,是第一個從太空中送回影像的人造衛星。
第一個成功的飛越過太陽系內其他天體的是月球1號,在1959年飛越了月球。最初是打算撞擊月球的,但卻錯過了目標成為第一個環繞太陽的人造物體。水手2號是第一個環繞其他行星的人造物體,在1962年繞行金星。第一顆成功環繞火星的是1964年的水手4號。直到1974年才有水手10號前往水星。
探測外行星的第一艘太空船是先鋒10號,在1973年飛越木星。在1979年,先鋒11號成為第一艘拜訪土星的太空船。航海家計畫在1977年先後發射了兩艘太空船進行外行星的大巡航,在1979年探訪了木星,1980和1981年先後訪視了土星。航海家2號繼續在1986年接近天王星和在1989年接近海王星。航海家太空船已經遠離海王星軌道外,在發現和研究終端震波、日鞘和日球層頂的路徑上繼續前進。依據NASA的資料,兩艘航海家太空船已經在距離太陽大約93天文單位處接觸到終端震波。
還沒有太空船曾經造訪過古柏帶天體。而在2006年1月19日發射的新視野號將成為第一艘探測這個區域的人造太空船。這艘無人太空船預計在2015年飛越冥王星。如果這被證明是可行的,任務將會擴大以繼續觀察一些古柏帶的其他天體。
在1966年,月球成為除了地球之外第一個有人造衛星繞行的太陽系天體(月球10號),然後是火星在1971年(水手9號),金星在1975年(金星9號),木星在1995年(伽利略號,也在1991年首先飛掠過小Gaspra),愛神星在2000年(會合-舒梅克號),和土星在2004年(卡西尼號-惠更斯號)。信使號太空船在2011年3月18日開始第一次繞行水星的軌道;同一時間,黎明號太空船將設定軌道在2011年環繞灶神星,並在2015年探索穀神星。
第一個在太陽系其它天體登陸的計劃是前蘇聯在1959年登陸月球的月球2號。從此以後,抵達越來越遙遠的行星,在1966年計畫登陸或撞擊金星(金星3號),1971年到火星(火星3號),但直到1976年才有維京1號成功登陸火星,2001年登陸愛神星(會合-舒梅克號),和2005年登陸土星的衛星泰坦(惠更斯)。伽利略太空船也在1995年拋下一個探測器進入木星的大氣層;由於木星沒有固體的表面,這個探測器在下降的過程中被逐漸增高的溫度和壓力摧毀掉。
載人的探測目前仍被限制在鄰近地球的環境內。第一個進入太空(以超過100公里的高度來定義)的人是前蘇聯的太空人尤里·加加林,於1961年4月12日搭乘東方一號升空。第一個在地球之外的天體上漫步的是美國宇航員尼爾·阿姆斯特朗,它是在1969年7月21日的阿波羅11號任務中,於月球上完成的。美國的太空梭是能夠重覆使用的太空船,前蘇聯也曾經開發太空梭並已完成一次的無人太空梭升空任務,蘇聯瓦解後,俄羅斯無力繼續維護任其荒廢。第一個空間站是前蘇聯的禮炮1號。在2004年,太空船1號成為在私人的基金資助下第一個進入次軌道的太空船。同年,美國總統喬治·沃克·布希宣布太空探測的遠景規劃:替換老舊的太空梭、重返月球、甚至載人前往火星,但這計畫在幾年後遭到終止。
太陽系形成於45億6,800萬年前的大型分子雲的重力坍塌區域中。這個初始的元氣可能有數光年大,並且誕生好幾顆恆星。由於是典型的分子雲,其成分主要是氫與一些氦,還有前幾代恆星融合的少量重元素。當這個區域將形成太陽系前,被稱為前太陽星雲,坍縮時因為角動量守恆,使它轉動得越來越快。中心,集中了大部分的質量,成為比周圍環繞的盤面越來越熱的區域。收縮的星雲越轉越快,它開始變得扁平,成為原行星盤,直徑大約200AU,在中心是高溫、高密度的原恆星。行星經由盤中的吸積形成,在塵埃和氣體的重力相互吸引下,逐漸凝聚形成越來越大的天體。在太陽系的早期可能有數以百計的原行星,但因合併或摧毀,留下行星、矮行星和殘餘物構成的小天體。
矽酸鹽和金屬的熔點很高,只有它們能在內太陽系的溫度下保持固體形態,這些物質最終組成了岩態行星,分別是水星、金星、地球和火星。由於金屬成分在原始太陽星雲中只占據了一小部分,類地行星都沒有發展得很大。凍結線在火星與木星之間的位置,巨行星(木星、土星、天王星和海王星)形成於凍結線的外側,這裡的溫度很低,揮發物質能以固態形式存在。這一區域的冰比組成類地行星的金屬和矽酸鹽更多,所以該區域的行星發育得很大,可以捕獲大量的氫和氦,它們是太陽系中含量最豐富的元素。太陽系中餘下的那些不可能組成行星的物質聚集在小行星帶、古柏帶和歐特雲區域。尼斯模型解釋了這些區域的形成原理,以及外側的行星可能在形成後又受到各種複雜重力的作用才到了它們今天的位置。
最初的五千萬年內,在原恆星中心處,氫的密度和壓力都大得足以發生熱核反應。在反應過程中,氫的溫度、反應速率、壓力和密度都一直在增加,直到流體的熱壓力與重力相抵消,達到靜力平衡狀態。到此,太陽就成了一顆主序星。太陽的主序星階段從開始到結束約有100億年,而其他的所有階段,包括殘骸生命期等總共只有20億年。從太陽出發的太陽風形成了日球層,並將殘餘的氣體和塵埃從原行星盤吹入星際空間,阻礙了行星的發育。此後,太陽越來越亮,主序星早期的亮度只有現在的70%。
太陽將基本保持現在的狀態,直到五十億年後,位於太陽中心的氫完全轉化為了氦。這也標誌著太陽主序星階段結束了。這時,太陽的核心開始崩塌,其輸出的能量比現在更大。太陽最外層的直徑將擴張到目前的260倍左右,太陽成了一顆紅巨星。由於表面積的急劇擴張,太陽表面的溫度將比主序星階段低很多(最低大約為2,600K)。不斷擴大的太陽將會使水星蒸發掉,並且使得地球的環境不再適合居住。最終,太陽核心的溫度高得足以使氦發生聚變,太陽在燃燒氫的時候會有小部分的時間來燃燒氦。太陽的質量還不足以使得比氫氦更重的元素發生融合反應,太陽核心的反應將會變弱。太陽外層物質會散逸到太空,剩下的部碎形成了白矮星,它的密度特別大,質量約為太陽的一半,但體積和地球差不多。散逸出去的外層物質形成了所謂的行星狀星雲,將一些組成太陽的物質返還給星際空間,但這時其中會包含像碳之類的重元素。
太陽是太陽系內的恆星,和系統中目前質量最大(332,900地球質量)的原件。在核心產生足夠高的溫度和壓力,以維持氫合成 氦的核融合反應,使它成為一顆主序星。這會釋放出大量的能量,主要是輻射至空間的電磁波,輻射的峰值在可見光的波段。
太陽是一顆G2型主序星。越熱的主序星越明亮,太陽的溫度介於炙手可熱的恆星和最冷的恆星之間。比太陽更熱和更亮的恆星很罕見,在銀河系中85%的恆星都是比太陽暗淡且低溫的紅矮星。
太陽是第一族恆星;比第二族恆星擁有更高豐度比氦重的元素(在天文用語是金屬)。比氫和氦重的元素是在恆星核心的核融合過程中形成的,經由古老的恆星爆炸才釋放進宇宙中。最老的恆星只有少量的金屬,越晚誕生的恆星金屬的含量就越多。這高金屬量是太陽能發展出行星系統極為重要的關鍵,因為行星是由「金屬」的吸積形成。
太陽系絕大部分的區域都接近真空,已知的只有行星際物質。隨著光,太陽持續的輻射出帶電粒子(電漿),也就是所謂的太陽風。這股粒子流以大約每小時150萬公里的速度向外傳播,創造出擴散至100AU範圍的稀薄大氣層,瀰漫著行星際物質(參見 § 太陽圈)。太陽表面的活動,像是閃焰和日冕大量拋射,擾動著太陽圈,創造太空天氣和造成地磁風暴。太陽圈內最大的結構是太陽圈電流片,是由太陽自轉活動帶動的磁場,在行星際物質間轉動產生的螺旋。
地球磁場阻止地球大氣層被太陽風剝奪。金星和火星沒有磁場,因此太陽風造成它們的大氣層逐漸流失進入太空。日冕大量拋射和相似的事件,從太陽表面吹出大量的物質和磁場。這種磁場和物質與地球磁場的交互作用,使帶電粒子像從過漏斗般地進入地球大氣層,在靠近磁極的附近創造出可見的極光。
太陽和行星的磁場(對於那些有它們的行星)屏蔽掉了部分從星際空間進入太陽系,被稱為宇宙射線的高能粒子。在非常長時間的尺度,宇宙射線在星際物質的密度和太陽磁場的強度各不相同,所以宇宙射線滲入太陽系的普及程度也不進相同,有許多仍是未知的力量。
行星際物質中至少有兩個圓盤狀的區域像是宇宙塵的家。第一個在內太陽系,是形成黃道光的黃道塵雲。它可能是小行星帶內的小行星受到行星重力擾動,造成小行星互相碰撞形成的。第二個塵埃雲從大約10AU延伸至40AU,並且可能是古柏帶內的類似碰撞形成的。
太陽系位於直徑約100,000光年,包含2000億顆恆星的棒旋星系,銀河系內,太陽的位置在銀河系外側,稱為獵戶-天鵝臂局部之一的螺旋臂。太陽距離銀河中心約25,000至28,000光年,並且以大約220Km/s的速度在銀河系中運動,大約2億2500萬年至2億5000萬年可以轉銀河一圈。這個轉動週期稱為太陽系的銀河年。太陽向點,太陽通過星際空間的路徑,目前是指向武仙座,靠近明亮的織女星的方向。黃道平面與銀河平面的交角大約是60°。
太陽在銀河系中內的位置是地球生命演化歷程的一個因素。它的軌道接近圓形,並與鄰近太陽的螺旋臂有著大致相同的速度,這給了地球生命很長一段穩定進化的時間因為。因為太陽幾乎不會穿越螺旋臂,而螺旋臂聚集大量超新星、重力不穩定性和可能擾亂太陽系的輻射。太陽系也在銀河的周邊地區,遠離銀河系中心擁擠的區域。在中心附近,來自鄰近恆星的重力拖曳,可以擾動歐特雲並發送許多彗星進入內太陽系,產生碰撞與危害地球上生命的潛在性災難與影響;銀河中心的強烈輻射也會干擾複雜生命的發展。即使在當前太陽系所在的位置,一些科學家的推測,在最近的35,000年,最接近的超新星可能造成一些不利生命發展的因素,從恆星的核心驅散出來的放射性輻射、塵埃顆粒和較大的彗星狀結構,可能被扔向太陽。
文章定位: