今天,
中華電信來家裡接光世代,
之前由於家裡的網路用量越來越多,
跟哥討論了一下,
比較了一下中華電信光世代跟ADSL的價錢,
僅比現在的價錢多了一百多塊,
而且難得的是
家裡這地方光纖可以到達,
<我本來以為鄉下地方應該沒辦法>
現在辦還有好禮三選一,
就沒有遲疑,
立刻去辦下去了。
今天一回去用了一下網路之後,
果然不同凡想,
由2M直接跳到10M,
一般要下載幾小時的影片一下子就下載完了,
即使是在尖峰時段,
速度一樣嚇人,
完全沒有lag的情形,
感覺就像是變了身之後的超級賽亞人,
秒殺了弗利沙一樣。
之前會覺得頻寬不夠,
下載一些資料都要花很久的時間,
而辦了光世代之後,
現在反而會擔心,
硬碟很快便會不夠用了吧。
下面是在網路上抓的資料
越看越模糊
需要多一點時間來消化消化
---------------------------------
光纖通訊
光纖通訊(Fiber-optic
communication)也作光纖通信,是指一種利用光與光纖(optical fiber)傳遞資訊的一種方式。屬於有線通信的一種。光經過調變(modulation)後便能攜帶資訊。自1980年代起,光纖通訊系統對於電信工業產生了革命性的作用,同時也在數位時代裡扮演非常重要的角色。光纖通信具有傳輸容量大,保密性好等許多優點。光纖通信現在已經成為當今最主要的有線通信方式。將需傳送的信息在發送端輸入到發送機中,將信息疊加或調製到作為信息信號載體的載波上,然後將已調製的載波通過傳輸媒質傳送到遠處的接收端,由接收機解調出原來的信息。
根據信號調製方式的不同,光纖通信可以分為數字光纖通信,模擬光纖通信。光纖通信的產業包括了光纖光纜,光器件,光設備,光通信儀錶,光通信集成電路等多個領域。
利用光纖做為通訊之用通常需經過下列幾個步驟:
* 以發射器(transmitter)產生光訊號。
* 以光纖傳遞訊號,同時必須確保光訊號在光纖中不會衰減或是嚴重變形。
* 以接收器(receiver)接收光訊號,並且轉換成電訊號。
應用
光纖常被電話公司用於傳遞電話、網際網路,或是有線電視的訊號,有時候利用一條光纖就可以同時傳遞上述的所有訊號。與傳統的銅線相比,光纖的訊號衰減(attenuation)與遭受干擾[來源請求](interference)的情形都改善很多,特別是長距離以及大量傳輸的使用場合中,光纖的優勢更為明顯。然而,在城市之間利用光纖的通訊基礎建設(infrastructure)通常施工難度以及材料成本難以控制,完工後的系統維運複雜度與成本也居高不下。因此,早期光纖通訊系統多半應用在長途的通訊需求中,這樣才能讓光纖的優勢徹底發揮,並且抑制住不斷增加的成本。
從2000年光通訊(optical
communication)市場崩潰後,光纖通訊的成本也不斷下探,目前已經和銅纜為骨幹的通訊系統不相上下[1]。
對於光纖通訊產業而言,1990年光放大器(optical amplifier)正式進入商業市場的應用後,很多超長距離的光纖通訊才得以真正實現,例如越洋的海底電纜。到了2002年時,越洋海底電纜的總長已經超過25萬公里,每秒能攜帶的資料量超過2.56Tb,而且根據電信業者的統計,這些數據從2002年後仍然不斷的大幅成長中。
光纖通訊的歷史
自古以來,人類對於長距離通訊的需求就不曾稍減。隨著時間的前進,從烽火到電報,再到1940年第一條同軸電纜(coaxial cable)正式服役,這些通訊系統的複雜度與精細度也不斷的進步。但是這些通訊方式各有其極限,使用電氣訊號傳遞資訊雖然快速,但是傳輸距離會因為電氣訊號容易衰減而需要大量的中繼器(repeater);微波(microwave)通訊雖然可以使用空氣做介質,可是也會受到載波頻率(carrier frequency)的限制。到了二十世紀中葉,人們才了解使用光來傳遞資訊,能帶來很多過去所沒有的顯著好處。
然而,當時並沒有同調性高的發光源(coherent light
source),也沒有適合作為傳遞光訊號的介質,也所以光通訊一直只是概念。直到1960年代,雷射(laser)的發明才解決了第一項難題。1970年代康寧公司(Corning Glass
Works)發展出高品質低衰減的光纖則是解決了第二項問題,此時訊號在光纖中傳遞的衰減量第一次低於光纖通訊之父高錕所提出的每公里衰減20分貝(20dB/km)關卡,證明了光纖作為通信介質的可能性。與此同時使用砷化鎵(GaAs)作為材料的半導體雷射(semiconductor
laser)也被發明出來,並且憑藉著體積小的優勢而大量運用於光纖通訊系統中。1976年,第一條速率為44.7Mbit/s的光纖通信系統在美國亞特蘭大的地下管道中誕生。
經過了五年的研發期,第一個商用的光纖通訊系統在1980年問市。這個人類史上第一個光纖通訊系統使用波長800奈米(nanometer)的砷化鎵雷射作為光源,傳輸的速率(data rate)達到45Mb/s(bits per second),每10公里需要一個中繼器增強訊號。
第二代的商用光纖通訊系統也在1980年代初期就發展出來,使用波長1300奈米的磷砷化鎵銦(InGaAsP)雷射。早期的光纖通訊系統雖然受到色散(dispersion)的問題而影響了訊號品質,但是1981年單模光纖(single-mode fiber)的發明克服了這個問題。到了1987年時,一個商用光纖通訊系統的傳輸速率已經高達1.7Gb/s,比第一個光纖通訊系統的速率快了將近四十倍之譜。同時傳輸的功率與訊號衰減的問題也有顯著改善,間隔50公里才需要一個中繼器增強訊號。1980年代末,EDFA的誕生,堪稱光通信歷史上的一個里程碑似的事件,它使光纖通信可直接進行光中繼,使長距離高速傳輸成為可能,並促使了DWDM的誕生。
第三代的光纖通訊系統改用波長1550奈米的雷射做光源,而且訊號的衰減已經低至每公里0.2分貝(0.2dB/km)。之前使用磷砷化鎵銦雷射的光纖通訊系統常常遭遇到脈波延散(pulse spreading)問題,而科學家則設計出色散遷移光纖(dispersion-shifted
fiber)來解決這些問題,這種光纖在傳遞1550奈米的光波時,色散幾乎為零,因其可將雷射光的光譜限制在單一縱模(longitudinal mode)。這些技術上的突破使得第三代光纖通訊系統的傳輸速率達到2.5Gb/s,而且中繼器的間隔可達到100公里遠。
第四代光纖通訊系統引進了光放大器(optical amplifier),進一步減少中繼器的需求。另外,波長分波多工(wavelength-division
multiplexing, WDM)技術則大幅增加傳輸速率。這兩項技術的發展讓光纖通訊系統的容量以每六個月增加一倍的方式大幅躍進,到了2001年時已經到達10Tb/s的驚人速率,足足是80年代光纖通訊系統的200倍之多。近年來,傳輸速率已經進一步增加到14Tb/s,每隔160公里才需要一個中繼器。
第五代光纖通訊系統發展的重心在於擴展波長分波多工器的波長操作範圍。傳統的波長範圍,也就是一般俗稱的「C band」約是1530奈米至1570奈米之間,新一帶的無水光纖(dry fiber)低損耗的波段則延伸到1300奈米至1650奈米間。另外一個發展中的技術是引進光孤子(optical soliton)的概念,利用光纖的非線性效應,讓脈波能夠抵抗色散而維持原本的波形。
1990年至2000年間,光纖通訊產業受到網際網路泡沫的影響而大幅成長。此外一些新興的網路應用,如隨選視訊(video on demand)使得網際網路頻寬的成長甚至超過摩爾定律(Moore's Law)所預期積體電路晶片中電晶體增加的速率。而自網際網路泡沫破滅至2006年為止,光纖通訊產業透過企業整併壯大規模,以及委外生產的方式降低成本來延續生命。
現在的發展前沿就是全光網絡了,使光通信完全的代替電信號通訊系統,當然,這還有很長的路要走。
核心技術
現代的光纖通訊系統多半包括一個發射器,將電訊號轉換成光訊號,再透過光纖將光訊號傳遞。光纖多半埋在地下,連接不同的建築物。系統中還包括數種光放大器,以及一個光接收器將光訊號轉換回電訊號。在光纖通訊系統中傳遞的多半是數位訊號,來源包括電腦、電話系統,或是有線電視系統。
發射器
在光纖通訊系統中通常作為光源的半導體元件是發光二極體(light-emitting
diode, LED)或是雷射二極體(laser diode)。LED與雷射二極體的主要差異在於前者所發出的光為非同調性(noncoherent),而後者則為同調性(coherent)的光。使用半導體作為光源的好處是體積小、發光效率高、可靠度佳,以及可以將波長最佳化,更重要的是半導體光源可以在高頻操作下直接調變,非常適合光纖通訊系統的需求。
LED藉著電激發光(electroluminescence)的原理發出非同調性的光,頻譜通常分散在30奈米至60奈米間。LED另外一項缺點是發光效率差,通常只有輸入功率的1%可以轉換成光功率,約是100毫瓦特(micro-watt)左右。但是由於LED的成本較低廉,因此常用於低價的應用中。常用於光通訊的LED主要材料是砷化鎵或是砷化鎵磷(GaAsP),後者的發光波長為1300奈米左右,比砷化鎵的810奈米至870奈米更適合用在光纖通訊。由於LED的頻譜範圍較廣,導致色散較為嚴重,也限制了其傳輸速率與傳輸距離的乘積。LED通常用在傳輸速率10Mb/s至100Mb/s的區域網路(local area
network, LAN),傳輸距離也在數公里之內。目前也有LED內包含了數個量子井(quantum well)的結構,使得LED可以發出不同波長的光,涵蓋較寬的頻譜,這種LED被廣泛應用在區域性的波長分波多工網路中。
半導體雷射的輸出功率通常在100微瓦特(mW)左右,而且為同調性質的光源,方向性相對而言較強,通常和單模光纖的耦合效率可達50%。雷射的輸出頻譜較窄,也有助於增加傳輸速率以及降低模態色散(model dispersion)。半導體雷射亦可在相當高的操作頻率下進行調變,原因是其復合時間(recombination
time)非常短。
半導體雷射通常可由輸入的電流有無直接調變其開關狀態與輸出訊號,不過對於某些傳輸速率非常高或是傳輸距離很長的應用,雷射光源可能會以連續波(continuous wave)的形式控制,例如使用外接的電吸收光調變器(electroabsorption
modulator)或是馬赫·任德干涉儀(Mach-Zehnder
interferometer)對光訊號加以調變。外接的調變元件可以大幅減少雷射的「啁啾脈衝」(chirp pulse)。啁啾脈衝會使得雷射的譜線寬度變寬,使得光纖內的色散變得嚴重。
光纖
主條目:光導纖維
光纖纜線包含一個核心(core),纖殼(cladding)以及外層的保護被覆(protective
coating)。核心與折射率(refractive index)較高的纖殼通常用高品質的矽石玻璃(silica glass)製成,但是現在也有使用塑膠作為材質的光纖。又因為光纖的外層有經過紫外線固化後的壓克力(acrylate)被覆,可以如銅纜一樣埋藏於地下,不需要太多維護費用。然而,如果光纖被彎折的太過劇烈,仍然有折斷的危險。而且因為光纖兩端連接需要十分精密的校準,所以折斷的光纖也難以重新接合。
光放大器
主條目:光放大器
過去光纖通訊的距離限制主要根源於訊號在光纖內的衰減以及訊號變形,而解決的方式是利用光電轉換的中繼器。這種中繼器先將光訊號轉回電訊號放大後再轉換成較強的光訊號傳往下一個中繼器,然而這樣的系統架構無疑較為複雜,不適用於新一代的波長分波多工技術,同時每隔20公里就需要一個中繼器,讓整個系統的成本也難以降低。
光放大器的目的即是在不用作光電與電光轉換下就直接放大光訊號。光放大器的原理是在一段光纖內摻雜(doping)稀土族元素(rare-earth)如鉺(erbium),再以短波長雷射激發(pumping)之。如此便能放大光訊號,取代中繼器。
接收器
構成光接收器的主要元件是光偵測器(photodetector),利用光電效應將入射的光訊號轉為電訊號。光偵測器通常是半導體為基礎的光二極體(photo diode),例如p-n接面二極體、p-i-n二極體,或是雪崩型二極體(avalanche diode)。另外「金屬-半導體-金屬」(Metal-Semiconductor-Metal,
MSM)光偵測器也因為與電路整合性佳,而被應用在光再生器(regenerator)或是波長分波多工器中。
光接收器電路通常使用轉阻放大器(transimpedence
amplifier, TIA)以及限幅放大器(limiting
amplifier)處理由光偵測器轉換出的光電流,轉阻放大器和限幅放大器可以將光電流轉換成振幅較小的電壓訊號,再透過後端的比較器(comparator)電路轉換成數位訊號。對於高速光纖通訊系統而言,訊號常常相對地衰減較為嚴重,為了避免接收器電路輸出的數位訊號變形超出規格,通常在接收器電路的後級也會加上時脈及資料回復電路(clock and data
recovery, CDR)以及鎖相迴路(phase-locked
loop, PLL)將訊號做適度處理再輸出。
波長分波多工
主條目:波長分波多工
波長分波多工的實際做法就是將光纖的工作波長分割成多個通道(channel),俾使能在同一條光纖內傳輸更大量的資料。一個完整的波長分波多工系統分為發射端的波長分波多工器(wavelength division
multiplexer)以及在接收端的波長分波解多工器(wavelength
division demultiplexer),最常用於波長分波多工系統的元件是陣列波導光柵(Arrayed Waveguide
Gratings, AWG)。而目前市面上已經有商用的波長分波多工器/解多工器,最多可將光纖通訊系統劃分成80個通道,也使得資料傳輸的速率一下子就突破Tb/s的等級。
頻寬距離乘積
由於傳輸距離越遠,光纖內的色散現象就越嚴重,影響訊號品質。因此常用於評估光纖通訊系統的一項指標就是頻寬-距離乘積,單位是百萬赫茲× 公里(MHz×km)。使用這兩個值的乘積做為指標的原因是通常這兩個值不會同時變好,而必須有所取捨(trade off)。舉例而言,一個常見的多模光纖(multi-mode fiber)系統的頻寬-距離乘積約是500MHz×km,代表這個系統在一公里內的訊號頻寬可以到500MHz,而如果距離縮短至0.5公里時,頻寬則可以倍增到1000MHz。
應用極限
雖然目前已經出現很多技術降低諸如色散之類的問題,也使得光纖通訊系統的容量已經達到14Tb/s以及160公里的傳輸距離[2],仍然有些問題需要工程師與科學家的研究與克服。以下是這些問題的簡單討論。
訊號色散
對於現代的玻璃光纖而言,最嚴重的問題並非訊號的衰減,而是色散問題,也就是訊號在光纖內傳輸一段距離後逐漸擴散重疊,使得接收端難以判別訊號的高或低。造成光纖內色散的成因很多。以模態色散為例,訊號的橫模(transverse mode)軸速度(axial speed)不一致導致色散,這也限制了多模光纖的應用。在單模光纖中,模態間的色散可以被壓抑得很低。
但是在單模光纖中一樣有色散問題,通常稱為群速色散(group-velocity
dispersion),起因是對不同波長的入射光波而言,玻璃的折射率略有不同,而光源所發射的光波不可能沒有頻譜的分佈,這也造成了光波在光纖內部會因為波長的些微差異而有不同的折射行為。另外一種在單模光纖中常見的色散稱為極化模態色散(polarization mode
dispersion),起因是單模光纖內雖然一次只能容納一個橫模的光波,但是這個橫模的光波卻可以有兩個方向的極化(polarization),而光纖內的任何結構缺陷與變形都可能讓這兩個極化方向的光波產生不一樣的傳遞速度,這又稱為光纖的雙折射現象(fiber
birefriigence)。這個現象可以透過極化恆持光纖(polarization-maintaining
optical fiber)加以抑制。
訊號衰減
訊號在光纖內衰減也造成光放大器成為光纖通訊系統所必需的元件。光波在光纖內衰減的主因有物質吸收、瑞利散射(Rayleigh
scattering)、米氏散射(Mie scattering)以及連接器造成的損失。雖然石英的吸收係數只有0.03dB/km,但是光纖內的雜質仍然會讓吸收係數變大。其他造成訊號衰減的原因還包括應力對光纖造成的變形、光纖密度的微小擾動,或是接合的技術仍有待加強。
訊號再生
現代的光纖通訊系統因為引進了很多新技術降低訊號衰減的程度,因此訊號再生只需要用於距離數百公里遠的通訊系統中。這使得光纖通訊系統的建置費用與維運成本大幅降低,特別對於越洋的海底光纖而言,中繼器的穩定度往往是維護成本居高不下的主因。這些突破對於控制系統的色散也有很大的助益,足以降低色散造成的非線性現象。此外,光固子也是另外一項可以大幅降低長距離通訊系統中色散的關鍵技術。
最後一哩光纖網路
雖然光纖網路享有高容量的優勢,但是在達成普及化的目標,也就是「光纖到戶」(Fiber To The
Home, FTTH)以及「最後一哩」(last mile)的網路佈建上仍然有很多困難待克服。然而,隨著網路頻寬的需求日增,已經有越來越多國家逐漸達成這個目的。以日本為例,光纖網路系統已經開始取代使用銅線的數位用戶迴路系統。
與傳統通訊系統的比較
對於某個通訊系統而言,使用傳統的銅纜作為傳輸介質較好,或是使用光纖較佳,有幾項考量的重點。光纖通常用於高頻寬以及長距離的應用,因為其具有低損耗、高容量,以及不需要太多中繼器等優點。光纖另外一項重要的優點是即使跨越長距離的數條光纖並列,光纖與光纖之間也不會產生串訊(cross-talk)的干擾,這和傳輸電訊號的傳輸線(transmission line)正好相反。
不過對於短距離與低頻寬的通訊應用而言,使用電訊號的傳輸有下列好處:
* 較低的建置費用
* 組裝容易
* 可以利用電力系統傳遞資訊
因為這些好處,所以在很短的距離傳輸資訊,例如主機之間、電路板之間,甚至是積體電路晶片之間,通常還是使用電訊號傳輸。然而目前也有些還在實驗階段的系統已經改採光來傳遞資訊。
在某些低頻寬的場合,光纖通訊仍然有其獨特的優勢:
* 能抵抗電磁干擾(EMI),包括核子造成的電磁脈衝。(不過光纖可能會毀於α或β射線)
* 對電訊號的阻抗極高,所以能在高電壓或是地面電位不同的狀況下安全工作。
* 重量較輕,這在飛機中特別重要。
* 不會產生火花,在某些易燃的環境中顯得重要。
* 沒有電磁輻射、不易被竊聽,對於需要高度安全的系統而言十分重要。
* 線徑小,當繞線的路徑被限制時,變得重要。
現行技術標準
為了能讓不同的光纖通訊設備製造商之間有共通的標準,國際電信聯盟(International
Telecommunications Union, ITU)制定了數個與光纖通訊相關的標準,包括:
* ITU-T G.651, "Characteristics of a
50/125 μm multimode graded index optical fibre cable"
* ITU-T G.652, "Characteristics of a
single-mode optical fibre cable"
其他關於光纖通訊的標準則規定了發射與接收端,或是傳輸介質的規格,包括了:
* 10G乙太網路(10 Gigabit Ethernet)
* 光纖分散式數據介面(FDDI)
* 光纖通道(Fibre channel)
* HIPPI
* 同步數位階層(Synchronous
Digital Hierarchy)
* 同步光纖網路(Synchronous
Optical Networking)
此外,在數位音效的領域中,也有利用光纖傳遞資訊的規格,那就是由日本東芝(Toshiba)所制定的TOSLINK規格。採用塑膠光纖(plastic optical
fiber, POF)作為媒介,系統中包含一個採用紅光LED的發射器以及整合了光偵測器與放大器電路的接收器。
被動式光纖網路(Passive optical
network)
電信網路節點的元件可分為〝主動式(Active)〞與〝被動式(Passive)〞兩種
。〝被動式〞元件不用電源就可以完成信號處理,
就像家裡的鏡子,
不需要電就能反射影像。
PON
(Passive Optical Network) 為被動式光網路,
即光纖網路除了終端設備需要用到電以外,
其中間的節點則以精緻小巧的光纖元件構成。
以新一代網路(New Generation
Network)通信觀念,電信網路可以粗分 為核心網路(Core Network)與接取網路(Access Network)兩部份。核心 網路相當於傳統的中繼及長途線路。接取網路則有光纜環。核心網路與接取 網路的功能不同,其傳輸型態也不同,因此PON 的應用又可分為核心網路的 PON 及接取網路PON 兩大類型。前者以分波多工(WOM)為主,後者光分歧 器與分波多工元件均用到。
光纖到房宅
無源光網絡不用使用電源組件去劃分信號。
信號分佈的使用分束器。
區別於製造商,
每一個分束器通常把一根光纖劃分成16,32或者64根子光纖,
並且一些分束器能夠聚合一個單獨的電纜。
一個分束器不能提供任何交換或者緩衝能力;
這種連接被稱為點到多點鏈接對於這樣的連接,
用戶端光網絡終端必須執行一些要求不能被其他方法實現的特殊功能。
例如,依據路由能力的缺失,
每一個信號離開中央辦公室(co)必須被廣播給所有的被同一分光器下的用戶
(包括那些不是被預期的信號)。
因此在光網絡終端過濾掉預期給其他用戶的信號。
還有,當分束器不能執行緩衝,
每一個單獨的光網絡終端必須和一個復用系統協調工作以保障離開用戶的信號在交叉點上不發生碰撞。
兩種復用方式都可以實現:
波分復用和時分復用波分復用中,
每一個用戶使用一個單獨的波長來傳輸信號。
在時分復用中,
用戶「輪流」傳輸信息。
在2007年早期,只有時分復用是技術上可行的。
和有源光網絡相比,
無源光網絡的優點和缺點都非常明顯。
無源光網絡避免了調用複雜的室外電子設備。
無源光網絡也同時允許傳輸簡單的模擬電視信號的模擬信號廣播。
然而,因為每一個信號必須被推送給所有同一個分束器下的用戶
(相對於僅一個信號的交換設備),
中央辦公室必須配備一個特彆強有力的稱為光路終端(OLT)的傳輸設備。
另外,因為每一個用戶的光網絡終端必須傳送所有的通路到中央辦公室
(而不是僅僅發到最近的交換設備),
用戶不能像有源光網絡一樣的遠離中央辦公室。